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Ten necessary criteria for stability of various dissipative fluids and plasmas are derived from the first and the
second principle of thermodynamics applied to a generic small mass element of the system, under the assump-
tion that local thermodynamic equilibrium holds everywhere at all times. We investigate the stability of steady
states of a mixture of different chemical species at the same temperature against volume-preserving perturba-
tions. We neglect both electric and magnetic polarization, and assume negligible net mass sources and particle
diffusion. We assume that both conduction- and radiation-induced heat losses increase with increasing tem-
perature. We invoke no Onsager symmetry, no detailed model of heat transport and production, no “Extended
Thermodynamics,” no “Maxent” method, and no “new” universal criterion of stability for steady states of
systems with dissipation. Each criterion takes the form of—or is a consequence of—a variational principle. We
retrieve maximization of entropy for isolated systems at thermodynamic equilibrium, as expected. If the
boundary conditions keep the relaxed state far from thermodynamic equilibrium, the stability criterion we
retrieve depends also on the detailed balance of momentum of a small mass element. This balance may include
the �p-related force, the Lorenz force of electromagnetism and the forces which are gradients of potentials. In
order to be stable, the solution of the steady-state equations of motion for a given problem should satisfy the
relevant stability criterion. Retrieved criteria include �among others� Taylor’s minimization of magnetic energy
with the constraint of given magnetic helicity in relaxed, turbulent plasmas, Rayleigh’s criterion of stability in
thermoacoustics, Paltridge et al.’s maximum entropy production principle for Earth’s atmosphere, Chan-
drasekhar’ minimization of the adverse temperature gradient in Bénard’s convective cells, and Malkus’ maxi-
mization of viscous power with the constraint of given mean velocity for turbulent shear flow in channels. It
turns out that characterization of systems far from equilibrium, e.g., by maximum entropy production is not a
general property but—just like minimum entropy production—is reserved to special systems. A taxonomy of
stability criteria is derived, which clarifies what is to be minimized, what is to be maximized and with which
constraint for each problem.

DOI: 10.1103/PhysRevE.81.041137 PACS number�s�: 05.70.Ln, 47.54.Bd, 52.25.Kn

I. PROBLEM

Gibbs’ statistical mechanics describes thermodynamic
equilibrium. Depending on the problem, equilibrium is de-
scribed either through maximization or minimization of
some macroscopic quantity. For example, entropy is maxi-
mized in isolated systems, and Gibbs’ free energy is mini-
mized in problems with given temperature and pressure. The
stability properties of thermodynamic equilibrium are well
established. In contrast, no general consensus exists for the
description of stable steady states of systems with dissipation
far from thermodynamic equilibrium.

As a starting point, some researchers have invoked—
either implicitly �1� or explicitly �2�—the so-called “local
thermodynamic equilibrium” �LTE� �3�. LTE means that—
although the total system is not at equilibrium—the internal
energy per unit mass u is the same function of the entropy s
per unit mass, the pressure p, the mass density �, etc. as in
real equilibrium; more generally, the relationships among
thermodynamic quantities will be the same as in real equi-
librium. Furthermore, it LTE holds within a small mass ele-
ment followed along its center-of-mass motion, then all rela-
tionships among total differentials of thermodynamic

quantities remain valid, provided that the total differential da
of the generic quantity a is da= �da /dt�dt where da /dt
=�a /�t+v ·�a and v is the center-of-mass velocity. Usually,
short-range, interparticle collisions ensure validity of LTE in
fluids; as for plasmas, see �4–6�.

Historically, a milestone toward characterization of sys-
tems with dissipation at LTE far from thermodynamic equi-
librium has been the introduction of variational principles in
the particular case when Onsager symmetry holds �for a re-
view, see �7��. This symmetry leads to the “least dissipation”
principle. In spite of its name, this principle is a maximiza-
tion �with respect to variation in thermodynamical fluxes at
fixed thermodynamical forces� of the difference between the
amount of entropy produced per unit time inside the system
�“entropy production”� and the so-called Rayleigh dissipa-
tion function—see Sec. IV.5 of �7�. Similar principles are
also helpful in solving the linearized Boltzmann equation
�see the reviews of �8,9��. The least dissipation principle re-
duces to maximization of entropy production at fixed ther-
modynamical forces as the dissipation function is one half of
the entropy production for linear phenomenological
relationships—see Sec. IV.1 of �7� and the problems de-
scribed by Eqs. �9�, �11�–�13�, and �17�–�18� of �10�, by Sec.
1 of �11�, by Eqs. �1.4�, �1.9�, and �1.25� of �8�, and by the
discussion of Eq. �6� of �58�. Under the same assumptions
of LTE and Onsager symmetry, further variational*anna_andrea.divita@tin.it
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principles—in both global and local form—are also avail-
able, which are fully equivalent to the least dissipation prin-
ciple, either with respect to variation in forces at fixed fluxes
and to variation in forces and fluxes “independently from one
another“—see p. 96 of �7�. Extension to nonsteady states is
discussed by Sienutycz et al. �13�—compare their equation
�34� with equation �4.35� of �7�.

As for steady states, Onsager symmetry leads also to an-
other result �2�, the “minimum entropy production” prin-
ciple: entropy production is a minimum with respect to “si-
multaneous variations” of fluxes and forces–see Sec. V.3 of
�7� and Sec. 3.3 of �9�. At least one flux vanishes in the
discussion of the principle for steady discontinuous systems,
while the differential equations ruling selected continuous
systems show that the entropy production has a negative time
derivative near the steady state and behaves like a Lyapunov
function, so that minimization of entropy production is a
criterion for stability of the steady state. However, the mini-
mum production principle and the least dissipation principle
are equivalent in steady states where the entropy current den-
sity at the boundary is fixed—see equation �5.39� of �7�.
Thus, the choice between maximization and minimization in
the domain of validity of Onsager symmetry for steady states
at LTE depends ultimately on what is kept fixed, just like in
thermodynamic equilibrium.

However, the validity of both least dissipation and “mini-
mum production” is limited to systems where both LTE and
Onsager symmetry hold. This limitation rules out both fluids
and plasmas, which violate Onsager symmetry �5,12�. In or-
der to circumvent this limitation, some authors �14� drop the
LTE assumption, and postulate that entropy depends locally
not only on u, � etc. but also on the heat flux and the viscous
stress tensor. Their approach �the so-called “Extended Irre-
versible Thermodynamics,” �EIT��, together with Einstein’s
formula for the probability of fluctuations, leads to predic-
tions which agree with well-known results of kinetic theory
near thermodynamic equilibrium. The price to be paid is that
the absolute temperature is no more the multiplying factor of
the differential of entropy in the first principle of
thermodynamics—see Eqs. �3.1�–�3.3� of �14�. Moreover, in
spite of the alleged independence of EIT from LTE—see
Sec. 3.1 of �14�—the latter remains somehow involved. For
example, the contribution of heat conduction to EIT entropy
is basically the product of a relaxation time and the corre-
sponding term in the entropy production rate at LTE—see
Eqs. �9.1�-�9.3� of �14�.

Another approach outside LTE is the so-called “Informa-
tion Thermodynamics” or “Maxent” �15–19�. Starting from
Jaynes’ investigation of the connection between information
theory, reproducibility and statistical mechanics �15,16�,
Dewar �17,18� derives a principle of maximum entropy pro-
duction. Niven �19� links Maxent and a control volume ap-
proach. Maxent has been applied to atmospheric physics
�20,21� and to problems with convection �21,22�. However,
Dewar’s results are criticized in Sec. 2.3.4 of �8� and by �23�.
Moreover, equation “qi=s−1” at page 021113-2 of �19� ap-
pears to be the Maxent equivalent of the basic tenet of
Gibbs’ statistical mechanics that an isolated system in equi-
librium is equally likely to be in any of its accessible states.
The latter tenet is related to Liouville equation; but no Max-

ent equivalent of Liouville equation is explicitly stated in
�19�.

Independently, Sawada invokes neither LTE nor the con-
straint of fixed forces and postulates “a principle of maxi-
mum increasing rate of the total entropy,” even if his argu-
ments lead rather to maximization the amount of entropy
exchanged per unit time with external, large heat
reservoirs—see Eq. �7� of �24�. Furthermore, Ziegler postu-
lates what he calls “orthogonality principle,” which is basi-
cally equivalent to maximization of entropy production at
fixed forces �8,25�. Remarkably, Ziegler invokes LTE
explicitly—see Sec. 2 of �25�. According to Sec. 2.4 of �8�,
Ziegler’s principle “has its statistical substantiation only if
the deviation from equilibrium is small.”

Indeed, a huge collection of experimental data suggests
that many systems in stable steady state far from thermody-
namic equilibrium maximize the entropy production; “how-
ever, attempts to derive the principle under discussion are so
far unconvincing since they often require introduction of ad-
ditional hypotheses, which by themselves are less evident
than the proved statement” �8�. Unfortunately, there are also
many well-known examples of systems with no Onsager
symmetry in stable, far-from-equilibrium steady state and
with no obvious maximization of entropy production. For
example, the absolute value of the gradient of temperature in
the Bènard convective cells investigated analytically by
Chandrasekhar �26� attains a constrained minimum, the con-
straint being provided by the time-averaged power balance
between buoyancy and dissipation. Helmholtz-Korteweg’
�27� and Kirchhoff’s �28,29� principles prescribe minimiza-
tion of the dissipated power in viscous fluids and Ohmic
resistors, respectively. Taylor’s minimization of magnetic en-
ergy with the constraint of fixed magnetic helicity �30� has
been applied to turbulent plasmas in both laboratory �31� and
space �32,33�. Finally, thermoacoustic stability in fluids with
combustion relies on Rayleigh’s criterion, which is not a
variational principle either �34–36�. After years of debate,
most researchers are likely to agree with Jaynes’ sharp criti-
cism to any dissipation-related stability principle outside
Gibbs’ statistical mechanics �28�: “if we have enough infor-
mation to apply the principle with any confidence, then we
have more than enough information to solve the steady-state
problem without it.”

Remarkably, however, the very fact that any arbitrary
small mass element of the system satisfies LTE at all times
puts a constraint on the evolution of the whole system
�4,37,38�. If the latter relaxes to some final, steady �� /�t
=0� stable state �referred to as “relaxed state” below� then it
is conceivable that LTE alone may provide us with useful
information on the relaxed state, with no need of Onsager
symmetry, of EIT, of Maxent and of any ad hoc postulate.
�Admittedly, as far as relaxed fluids far from thermodynamic
equilibrium are concerned, the notion of “steady state” is
rather ambiguous: all the same, we maintain—as a working
hypothesis—that it still makes sense—possibly after time-
averaging on time scales� turbulent time scales�.

In particular, the first and the second principle of thermo-
dynamics in a nonpolarized mixture of N chemical species
with the same temperature T for all chemical species at LTE
lead to
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du = Tds − pd��−1� + �z�
�
zdcz, �1.1�

��u/�T��,N � 0, �1.2�

���−1/�p�T,N � 0, �1.3�

� jz����
z/�cj�p,Tdczdcj � 0 �1.4�

�see �39� Sec. XV 5,12�. Here j, z=1, . . . ,N, ��
z��zmz

−1,
cz�Nzmz��zNzmz�−1, where �z, mz, and Nz are the chemical
potential, the mass of one particle and the number of par-
ticles of the z-th chemical species, respectively. Finally, � �N
means that all cz’s are kept fixed, and the sign � is replaced
by = only for dcz=0. Furthermore, if LTE holds within a
small mass element followed along its center-of-mass mo-
tion, relationships �1.1�–�1.4� lead to

�d�T−1�/dt��d��u�/dt� � ��z�d���
zT

−1�/dt��dcz/dt�

+ ��−1T−1�dp/dt� + �u + p�−1�

	�dT−1/dt���d�/dt� �1.5�

�see Appendix A�. Basically, Eq. �1.5� is the so-called “gen-
eral evolution criterion” �GEC� �37,38�. GEC provides a
constraint on the evolution of a generic small mass element
and is the starting point of our discussion. Physically, if LTE
holds everywhere at all times during relaxation, then the re-
laxed state is the final outcome of the GEC-constrained evo-
lution of many small mass elements. Our aim is to gain in-
formation concerning the relaxed state from GEC.

To this purpose, we generalize the arguments of �4� and
�38�. Since we are interested in relaxed states of the system
as a whole, we focus our attention on volume integrals like
the volume V=�dx of the system �dx volume element, da
surface element of the boundary�, its internal energy E
=�dx�u and its entropy S=�dx�s. We define also the spatial
average ��a���V−1�dxa and the temporal average �a�
� limT→
 T−1�t

t+Tdt�a�t�� of a. Sec. II contains our assump-
tions. In Sec. III, suitable integration on the volume of the
system will allow us to derive from GEC some inequalities
involving the time derivatives of these volume integrals in
the neighborhood of a relaxed state with the help of some
simplifying assumptions and of the balances of mass and
energy. In Sec. IV, these inequalities lead to necessary con-
ditions for the stability of the relaxed state against volume-
preserving perturbations. We will show that different criteria
for stability of relaxed states in various problems of fluid
mechanics and plasma physics follow from GEC as particu-
lar cases in Secs. V–IX, depending on the—insofar
neglected—detailed momentum balance of the small mass
element—i.e., on the detailed nature of the forces acting on
the latter. Conclusions are given in Sec. X, which includes a
synoptic table of our results.

II. ASSUMPTIONS

We assume no net mass source. Then, the mass balance
reads �� /�t+� · ��v�=0, i.e.,

�−1d�/dt + � · v = 0. �2.1�

As for the balance of momentum, we are going to discuss
problems where the only forces acting on the generic small
mass element are the �p-related force, the forces which are
gradients of potentials, the viscous force and the Lorenz
force of electromagnetism. Other forces �e.g., due to magne-
tization, elasticity, etc.� would add new terms to �du in Eq.
�1.1�, and are neglected in this work. The �p-related force
affects Eq. �1.1� through pd��−1�. The potentials add a new
contribution to the ��

z’s. The viscous force and the Lorenz
force add a viscous heating power density and an Ohmic
heating power density, respectively, to the heating power
density Ph ��0; we neglect endothermal reactions in the fol-
lowing�, which is defined as follows:

Ph � � · q + P . �2.2�

Here the quantity q is the heat flux. It is a local quantity and
therefore does not include convective transport:
convection—if any—is due to flow patterns on a spatial
scale� the spatial scale a small mass element. The quantity
P is defined as

P � ��du/dt� + �p�d�−1/dt� . �2.3�

Once an explicit expression for both Ph and q is provided,
Eqs. �2.2� and �2.3� give the energy balance of the small
mass element. The quantities �dxPh and �dxT−1Ph are the
total heating power and the amount of entropy produced per
unit time by heating processes, respectively. In the following,
the only nonviscous and non-Ohmic heating mechanism �if
any� is due to short-range, interparticle reactions that do not
alter the momentum of the small mass element. For simplic-
ity, we assume that the amount W of heat released per par-
ticle is ��z	T. Nuclear fusion of deuterons �T
	100 KeV, W /T	30� and oxygen-methane combustion
�T	0.2 eV, W /T	40� are examples of such reactions.
Then, we neglect terms�dcz /dt in Ph. This assumption does
not imply that these reactions do not occur �their impact on
the chemical composition of the mixture may be compen-
sated by suitable diffusion flows even at dcz /dt	0, accord-
ing to Eq. �2.13� of �2��, but puts in evidence that their oc-
currence affects our arguments below only weakly.
Equations �1.1� and �2.3� give

P = �Tds/dt . �2.4�

Of course, Eq. �2.4� holds also in chemically pure �N=1�
substances, nonreacting mixtures, and quasineutral, hot �T
�KeV� plasmas where both recombination and ionization
are negligible. Moreover, neglecting terms�dcz /dt in Ph al-
lows us to correct an error in the proof discussed in Ref. �38�.

We invoke no Onsager symmetry �2�, no extended ther-
modynamics �14�, no maximization postulate �17,24,25�, and
no detailed model of heat production and transport. We as-
sume that a relaxed state exists and write a�x , t�=a0�x�
+a1�x , t�, P0=0. Stability of the relaxed state implies that the
perturbation amplitude never diverges regardless of its phys-
ics �e.g., damped oscillations, etc.�, i.e., it remains upper-
bounded everywhere across the system at all times. Then, a
�x , t� has a finite upper bound everywhere at all times, i.e., a
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�x , t��AM�t� everywhere, where AM�t��Amax for arbitrary t.
Analogous arguments hold for the lower bound Amin
�a�x , t��Am�t��Amin�. We are free to take Amin=−Amax. Ac-
cordingly, stability of the relaxed state implies that for a
generic quantity a�x , t� a positive constant Amax and two
functions of time AM�t�, Am�t� exist such that the following
inequality �invoked in the Appendices� holds:

Amax � AM�t� � a�x,t� � Am�t� � − Amax. �2.5�

Furthermore, since we are interested in necessary condition
of stability, we are free to select the perturbation a1, which
we invoke in order to test stability. We limit ourselves to
smooth perturbations which relax gently back to the unper-
turbed state. By “smooth” and “gently” we mean that we
neglect terms� 
��da1 /dt�
 and �
da1 /dt
−1
d2a1 /dt2
, re-
spectively. Our choice includes no small-scale, fast �e.g., tur-
bulent� fluctuations of a. For example, if a0�x� is the macro-
scopic electric current density flowing across a stable, steady,
large tokamak plasma �lifetime	 tens of seconds� then our
a1�x , t� includes slow perturbations related to resistive decay
�lifetime	plasma inductance/plasma resistance	1 second�
but no magnetohydrodynamic �MHD� fluctuations �lifetime
�10−3 s�. We do not say that fast fluctuations are negligible;
but no stability exists if the steady state is unstable against
smooth and gentle perturbations, and the relative criteria for
stability are also necessary conditions of stability. Should the
discussion include fast fluctuations too, stronger necessary
criteria would result. We do not need such stronger criteria in
the following. As shown in the Appendices, our choice of
smooth and gentle perturbations is due to mathematical con-
venience. In particular, LTE implies that Gibbs’ statistical
mechanics holds inside a small fluid element. Then, Gibbs’
statistical mechanics rules the fluctuations in each small fluid
element near its own local thermodynamical equilibrium
�e.g., with the help of Einstein’s formula�. As these fluctua-
tions occur inside the small fluid element, we consider them
as small-scale phenomena. As such, we may safely assume
their time scale is a short one, and consider them as examples
of those fast fluctuations we do not deal with in the present
work.

Finally, physical intuition—in agreement with Le Châte-
lier’s principle—suggests that a state where an increase of T
induces a decrease in energy losses is a bad candidate for
stability, as any decrease in energy losses is likely to induce
further increase of T. Analogous arguments hold for cooling
processes. Accordingly, we assume �38�

� dx�� · q1��d�T−1�/dt� � 0. �2.6�

Inequality Eq. �2.6� involves just a volume integral; we say
nothing about the sign of the integrand on the LHS of Eq.
�2.6� at a given location in the system at a given time during
the relaxation process. Since we are not interested in the fast
fluctuations of each small fluid element near its own local
thermodynamical equilibrium, we take into account in Eq.
�2.6� just those large-scale perturbations which are not bound
to satisfy Gibbs’ statistical mechanics �precisely because the
system as a whole is far from thermodynamic equilibrium�.

III. INEQUALITIES

We derive in Appendix B the following inequalities from
Eqs. �1.5�-�2.6� �c1 ,c2 ,c3 ,c4 are constant quantities�

d�� dxT−1Ph/dt � c1dV/dt + c2d�� dxPh�/dt ,

�3.1�

− d�� dx�� · ��sv� + q · ��T−1��/dt

� c1dV/dt + c2d�� dxPh�/dt , �3.2�

d2S/dt2 � c3d2V/dt2 + c4d2E/dt2. �3.3�

IV. CRITERIA FOR STABILITY

According to Eqs. �3.1� and �3.2�, a necessary condition
for the stability of a relaxed state is that the latter satisfies the
variational principles �we skip the subscript “0” below, un-
less otherwise stated�

� dxT−1Ph = min. with fixed V and � dxPh,

�4.1�

� dx�� · ��sv� + q · ��T−1��

= max. with fixed V and � dxPh. �4.2�

In fact, if the unperturbed state violates Eq. �4.1�, then Eq.
�3.1� forbids stability against perturbations which conserve
both V and �dxPh but lower the value of �dxT−1P. Similar
arguments hold for Eqs. �3.2� and �4.2�. In case of large
competing energy transport, it is useful to discuss the limit
�T→0 �i.e., T�x�→Tboundary everywhere� even if Ph�0. In
this case, it is possible to show �see Sec. 3 of �38�� that the
solutions of the Euler-Lagrange equations of Eq. �4.1� solve
also the Euler-Lagrange equations of the variational principle

� dxPh = min. with fixed V, and T�x�

= Tboundary everywhere. �4.3�

For a relaxation process where both V and E are constant at
all times �like, e.g., in isolated systems�, Eq. �3.3� implies
d2S /dt2�0. Evolution toward thermodynamic equilibrium
�S=max.� of isolated systems �E=const., V=const.� provides
a well-known example of such relaxation. �As for noniso-
lated systems, suitable boundary conditions—e.g. an applied
voltage—may keep the relaxed state far from thermody-
namic equilibrium�. Another consequence of Eq. �3.3� is dis-
cussed in Sec. IX.
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V. APPLICATIONS: GENERALITIES

Generally speaking, relationships �3.1�–�4.3� lead to dif-
ferent results for different particular relaxed states, depend-
ing on the detailed heating mechanism �Ohmic, viscous, exo-
thermal reactions, none�, on the detailed nature of the forces
acting on the system �the �p-related force, the viscous force,
the Lorenz force of electromagnetism, and the forces that are
gradients of potentials� and on the boundary conditions. As
for the latter, in the following we analyze stability against
perturbations of relaxed states which conserve volume at all
times, so that we may skip the constraint of fixed volume.
We are going to derive some results of hydrodynamics,
plasma physics and thermoacoustics, which have been often
suggested in the literature without rigorous proof in order to
cope with experiments. To this purpose, we introduce the
Joule heating power density PJ��E+v∧B� · j and the vis-
cous heating power density PV���ik��vi /�xk+�vk /�xi
−2ik�� ·v� /3���vi /�xk�+��� ·v�2, where i ,k=1,2 ,3, and E,
B, j, �, and � are the electric field, the magnetic field, the
electric current density, the dynamic viscosity and the second
viscosity, respectively �1�. In the general case, we write Ph
= PJ+ PV+the contribution ��W� of short-range �chemical,
nuclear� reactions, which conserve the momentum of the
small mass element. Noteworthy, Eqs. �3.1�–�4.3� imply per
se no minimization of the amount of entropy produced per
unit time by all irreversible processes; this is in agreement
with the fact that we did not invoke Onsager symmetry any-
where, unlike �2�.

In the following, we invoke simultaneous validity of Eqs.
�4.1� and �4.2� for the same relaxed state only occasionally,
as we discuss some applications of each criterion separately
for simplicity. As a result, the list of retrieved results is
bound to be incomplete. Of course, the full set of conserva-
tion laws provides complete description of relaxed states and
leaves no room for any further variational principle �28�. If
relaxation occurs, then the description of the relaxed state
which is provided with the help of the variational principle
must agree with the description which is provided by the full
set of equations of motion: “the energy equation, the equa-
tion of motion and the entropy equation are not independent
of one another �…� only two out of the three need to be used
in any problem”—see �40� p. 189. A relaxed state should
therefore both solve the steady-state equations of motion and
satisfy the variational principle. In other words, the former
provide the latter with further constraints. In the following,
we mean that all maxima and minima we are going to derive
are constrained not only by the constraints we shall write
down explicitly in each case, but also by the steady-state
equations of motion �this fact has been utilized explicitly,
e.g., in Ref. �4��.

VI. APPLICATIONS OF EQ. (4.1)

�A� Strong stabilizing magnetic field allows stable toka-
mak plasmas at MHD equilibrium to exist with �T�0 �by
“strong” we mean that the field is much larger than the mag-
netic field created by the currents flowing across the plasma�.
We neglect both recombination and ionization in the plasma
bulk at least; Eq. �2.4� follows, and Eq. �4.1� allows deter-

mination of electric conductivity profiles in tokamaks start-
ing from experimental data �41�, under the assumption Ph
= PJ. Conservation of total mass—assumed in �41�—follows
from Eqs. �2.1� and �B.1� of Appendix B for a=�. Our as-
sumption that T is the same for all chemical species is re-
laxed in �41�, as T is replaced by the electron temperature.

�B� Our discussion requires two preliminary, auxiliary re-
lationships. Generally speaking, 
�T
�0 everywhere, and
��
�T
���0. Moreover, we show in Appendix B that

� dxT−1Ph =� dx�T−1 � · q + � · ��sv�� �6.1�

in steady state. Note that the LHS of Eq. �6.1� is non-
negative. If the net amount of entropy advected across the
boundary of the system is negligible, �dx� · ��sv�
=�da · ��sv�=0. According to Eq. �6.1�, Eq. �4.1� is compat-
ible with

� dxT−1� · q = min. with fixed � dxPh. �6.2�

Admittedly, this is no rigorous proof of Eq. �6.2�. For ex-
ample, should q vanish, then Eq. �6.1� would imply
�dxT−1Ph=�da ·�sv, but the values of the L.H.S. and the
R.H.S. would be a minimum and a maximum under the same
constraint of fixed �dxPh according to Eqs. �4.2� and �4.3�,
respectively. Broadly speaking, however, the larger 
�T�x�

the larger the difference of temperature between a small mass
element located at x with given temperature T�x� and its
surroundings, the larger the amount of heat exchanged per
unit time by the small mass element through radiation and
convection. In particular, �dxT−1� ·q=0 if 
�T
=0 every-
where. In turn, 
�T
=0 everywhere if and only if ��
�T
��
=0. Since �dx� · ��sv�=0, Eq. �6.1� implies that �dxT−1� ·q
is non-negative, just like ��
�T
��. Then, �dxT−1� ·q is an
increasing function of ��
�T
�� in a neighborhood of
��
�T
��=0, i.e., if ��
�T
�� is “not too large” �a precise mean-
ing is given below� and Eq. �6.2� leads to

��
�T
�� = min. with fixed � dxPh. �6.3�

Indeed, this is in agreement with Chandrasekhar’s results–
see Secs. 33, 43 of �26�. Chandrasekhar notes that Eq. �6.3�
applies to �possibly time-averaged� relaxed states near the
onset of Bénard convection cells in hydrodynamics �Ph
= PV� and MHD �Ph= PJ+ PV�. In the former case, viscous
effects are not negligible, e.g., when the Rayleigh number
Ra	Rathr where Rathr is the threshold value of Ra, which
corresponds to the onset of convection. Since ��
�T
���Ra in
the problems solved in �26�, “not too large” means just Ra
	Rathr. A time-averaged balance between the mechanical
power delivered by the buoyancy force and �dxPh gives the
nonzero value of the latter, in agreement with the equations
of motion.

�C� Our result �6.3� is also in agreement with Malkus’
analysis �42� of steady-state turbulent shear flows in viscous
�Ph= PV�, incompressible �� ·v=0� fluids moving with mean
velocity U=U�z� in the x direction between fixed parallel
surfaces of infinite extent z=+z0 and z=−z0 in the Cartesian
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frame of coordinates �x ,y ,z� and with U�z=+z0�=U�z=
−z0�=0. Here “mean” is defined as an average in the y di-
rection. Periodic boundary conditions allow us to write
�dx� · ��sv�=0. Malkus �Eqs. �1.12�–�1.14�� maximizes the
total rate of dissipation per unit mass �written in the form
��ik��
�vi /�xk
2��, ���−1� kinematic viscosity�, with fixed
Um��2z0�−1�−z0

+z0Udz. This is equivalent to

� dxPh = max. with fixed � · v�=0� and fixed Um

�6.4�

as the fluid is incompressible and our treatment ensures con-
servation of total mass �see Sec. VIA�. We are going to proof
that the solutions of Eq. �6.3� solve also Eq. �6.4�. To this
purpose, it is enough to proof that ��
�T
�� is an increasing
function of Um. If this is true, in fact, Um too is an increasing
function of ��
�T
��, so that Eq. �6.3� leads to

Um = min. with fixed � · v�=0� and fixed � dxPh

�6.5�

and a lemma of variational calculus, the reciprocity principle
for isoperimetric problems �see Sec. IX.3 of �43��, ensures
that the solutions of Eq. �6.5� solve also Eq. �6.4�. It is cus-
tomary to assume that U�z� changes sign nowhere in the
range +z0�z�−z0; with no loss of generality we take
U�z��0 everywhere, so that Um�0; Um=0 if and only if
U=0 everywhere, which in turn is equivalent to Ph=0
everywhere. For simplicity, let us assume T�z=+z0�=T�z
=−z0�=Tboundary at all times. In this case, if Ph=0 everywhere
then 
�T
=0 everywhere and ��
�T
��=0. Correspondingly,
Um=0 if and only if ��
�T
��=0, and Um�0 if and only if
��
�T
���0. Then, ��
�T
�� is an increasing function of Um in
a neighborhood of Um=0, as required. Broadly speaking, the
larger Um the larger 
dU /dz
 �as U vanishes at �z0� the larger
the viscous heating, the larger 
�T
 �as Tboundary is fixed�. A
similar behavior is expected in the more interesting case
when the Reynolds number Re��−1z0Um exceeds the thresh-
old value Rethr corresponding to the onset of turbulence, as
this onset corresponds to a sharp increase in viscous dissipa-
tion: the larger Re−Rethr, the larger Um−Rethr z0

−1�, the larger
�dxPh and ��
�T
��, so that once again ��
�T
�� is an increas-
ing function of Um in a right neighborhood of Rethr at least.
Admittedly, the actual values of both �dxPh and ��
�T
�� are
usually neglected in most practical applications. However,
what is crucial here is their mutual dependence. In particular,
nonzero values of Um �hence �dxPh� prevent ��
�T
�� from
vanishing. Finally, Eq. �6.5� is equivalent to the variational
principle

Re = min. with fixed � · v�=0� and fixed � dxPh

�6.6�

for constant values of � and z0. Indeed, it is shown in Ref.
�42� that Eq. �6.6� is equivalent to Eq. �6.4�. Formally, Eq.
�6.6� is similar to Chandrasekhar’s constrained minimization

of ��
�T
���Ra discussed above in Sec. VIB for Bénard
cells.

VII. APPLICATIONS OF EQ. (4.2)

�A� If we neglect heat conduction and radiation �i.e., q�
Eq. �4.2� reduces to �dx� · ��sv�=max. with fixed �dxPh. If
our relaxed system contains a strong shock wave �44� in a
viscous fluid �Ph= PV� then the shock thickness shrinks to
zero for large Mach number—see Sec. 87 of �1�—and
�dx� · ��sv�=�Adf ·�sv, �v ·df�I=−v�I
df
, and �v ·df�II
=v�II
df
 where A is a closed surface embedding the shock
wave with unit surface df, �Adf ·�sv is the amount of entropy
exchanged by the strong shock wave with the external world
through convection per unit time, subscripts “I” and “II” re-
fer to the region in front and behind the shock wave and the
subscript � refers to the direction perpendicular to the shock
wave, respectively. While �dxPh→0 as the shock thickness
vanishes, discontinuity TII�TI prevents �dx� · ��sv�
=�dxT−1Ph from vanishing in Eq. �6.1�. If �sv changes
mainly in the direction which is orthogonal to the shock
wave, then �Adf ·�sv� ��sv��II− ��sv��I. Mass balance and
irreversibility require ��v��II= ��v��I and sII�sI, respec-
tively; Eq. �4.2� leads to

��sv��II − ��sv��I = max. �7.1�

Rebhan has shown that Eq. �7.1� holds �see Eq. �17� of �44��
and that it may replace one conservation equation.

�B� If convection across the boundary is negligible, then
�dx� · ��sv�=0 and Eq. �4.2� reduces to �dxq ·��T−1�
=max. with the constraint of fixed �dxPh. This result is in
agreement with Eq. �15� of �17� and has a simple physical
meaning provided that q=−��x��T�x�, with ��x� thermal
conductivity. In fact, q ·��T−1�=+��x����ln T��x��2; in turn,
if T�x� is given—e.g., from the solution of Eq. �6.3�—then
maximization of ��x� follows everywhere once �dxPh is pro-
vided, e.g., from the energy balance of Sec. VI. Physically,
this result agrees with Eq. �6.3�, as maximization of thermal
conductivity �due, e.g., to turbulence, as in plasmas� leads
naturally to minimize 
�T
 everywhere.

�C� If both �dxPh and �dx� · ��sv� vanish then heating
mechanisms provide no more constraint and Eqs. �4.2� and
�6.1�, the relationship q ·��T−1�=� · �T−1q�−T−1� ·q and
Gauss’ divergence theorem give

� da · T−1q = max. �7.2�

The LHS of Eq. �7.2� is the rate of entropy increase in the
surrounding world due to conductive and/or radiative energy
transport across the boundary of our system. Generalizing
Paltridge’s results �20�, Ozawa and co-workers �21,22� apply
Eq. �7.2� to the general circulation of Earth’s global fluid �the
atmosphere and the ocean�, as no net convection occurs
across the boundary and Ph is neglected everywhere inside
the system. Our q and Eq. �4.2� correspond to the quantity F
of Sec. 2.4 and to Eq. �8.b� of �22�, respectively. F includes
no large-scale convection �quoting �22�: it “does not in prin-
ciple include the advective heat flux”� but includes heat con-
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duction ruled by small-scale turbulence as well as radiation.
In particular, Eq. �7.2� describes well the overall outcome
which results from the radiation power balances of many
different regions of the global fluid �see the discussion of Eq.
�9� in �22��. Ozawa et al. note also �21� that Eq. �7.2� applies
reasonably well to the viscous �Ph= PV�, turbulent, time-
averaged relaxed fluids with Bénard convection cells in the
limit of large Rayleigh number: Ra�Rathr �see Fig. 4 of
�21�: Ra�105�Rathr=1700�; in this limit both viscosity and
PV become negligible �in the fluid bulk at least�.

�D� The experiments of Biwa et al. �45� provide us with a
further, independent confirmation of Eq. �7.2�. They supply
to a fluid a given amount QH of heat per unit time through a
heat exchanger H at temperature TH and remove an amount
QC of heat per unit time through another heat exchanger C at
temperature TC�TH. Steady state is achieved when QH
=QC. No heating occurs inside the system made of H and C
and no convection occurs across the boundaries of this sys-
tem. Accordingly, Eq. �7.2� holds and �da ·T−1q= �QHTH

−1

−QCTC
−1�=max., or, equivalently

�QCTC
−1 − QHTH

−1� = min. �7.3�

The contributions of H and C to �da ·T−1q are �0 and �0,
respectively, as QH comes out from the system toward the
fluid and QC comes into the system from the fluid. Observa-
tions �45� show that stable steady states satisfy Eq. �7.3�. Our
derivation of the ‘maximum entropy principles’ Eq.
�7.1�–�7.3� invokes no Maxent method and no maximization
postulate �17,24�.

VIII. APPLICATIONS OF EQ. (4.3)

�A� Kirchhoff’s variational principle

� dx
j
2�� = min. with fixed � · j�=0� �8.1�

—see �28,29� and Probl. 3 Sec. 21 of �46�—follows from Eq.
�4.3� provided that Ph= PJ and that Ohm’s law takes the
usual form ��j= �E+v∧B� �46� where ��=���T��0 is the
scalar electric resistivity. In fact, the constraint T�x�
=Tboundary everywhere reduces to ��=���Tboundary� every-
where; this fact allows us to take ���T� out from the volume
integral and to factor it out, so that we skip the constraint
T=Tboundary in Eq. �8.1� as it affects no more the result of
minimization. Moreover, the constraint � · j=0 �conservation
of electric charge� follows from the steady-state equation of
motion for j, i.e., Ampère’s law �0j=�∧B, with �0=4�
	10−7 SI units. A solution of Eq. �8.1� is j��=�h, �h
=0,h, scalar=h�x�. Complex geometrical patterns associated
to the solutions of Eq. �8.1� are discussed in Ref. �49�.

�B� Radiative transport may flatten �T in relaxed
plasmas—as in radiation-cooled, free-flowing electric
arcs—in the plasma bulk at least. By “free-flowing” we
mean that the arc is in contact with no solid walls but the
electrodes, so that the exchange of matter between the arc
bulk and the external world is reduced and dcz /dt=v ·�cz
=0 in steady-state �� /�t=0�. When applied to such an arc
with negligible Lorenz force and voltage drop V, where

the external world maintains an electric current I at a
value Iboundary, Eq. �8.1� takes the form IV=min. with fixed
I �=Iboundary�, i.e., reduces to the principle V=min. postulated
by Steenbeck �47�. Our discussion shows that V is quite in-
sensitive to arc temperature. An independent investigation of
SF6 arcs confirms this result—see Fig. 8 and Sec. V of �48�.

�C� The natural counterpart of Eq. �8.1� for Ph= PV is
Helmholtz-Kortweg variational principle

� dx
� ∧ v
2� = min. with fixed � · v�=0� �8.2�

—see Sec. 327 of �27�, where Eq. �8.2� is derived for incom-
pressible fluids, which are subject to the �p-related force, the
viscous force and �possibly� to constant potential forces. For-
mally, Eq. �8.2� follows from Eq. �4.3� for incompressible,
viscous fluids with dynamical viscosity �=��T�, T�x�
=Tboundary everywhere across the fluid and v=0 everywhere
on the boundary �in contrast to Malkus’ problem of Sec.
VIC, where Um�0 implies ��
�T
���0, hence 
�T
�0
somewhere, and Eq. �4.3� does not apply�. In fact, the con-
straint T�x�=Tboundary leads to �=��Tboundary� everywhere;
this fact allows us to take ��T� out from the volume integral
and to factor it out, so that we skip the constraint T
=Tboundary in Eq. �8.2�—see Sec. 4 of �37�. Moreover, Gauss’
divergence theorem and the identity �50� �ik��vi /�xk
+�vk /�xi−2ik�� ·v� /3���vi /�xk�= �4 /3��� ·v�2+ 
�∧v
2
+2� · ��v ·��v−v�� ·v�� leads to �dxPV=�dx���4� /3�
+���� ·v�2+�
�∧v
2�dx, which in turn reduces to
�dx
�∧v
2� as � ·v=0. The analogy between Eqs. �8.1� and
�8.2� is evident if we rewrite Eq. �8.1� with B as Lagrangian
coordinate: �dx
�∧B
2��=min. with � ·B=0. Not surpris-
ingly, a solution of Eq. �8.2� is v=��, ��=0, ��x� scalar
�the “velocity potential”�. In contrast with Helmholtz-
Kortweg’s result Eq. �8.2�, Maxent method leads to maximi-
zation of �dxPV for a �T=0, N=1 viscous fluid—see both
Sec. 4.2 and Eq. �15� of Ref. �17�, where the quantity
�mn��mn�����vmn��� /�xn��= PV and the term���z vanishes
after integration by parts.

�D� If relaxation occurs in plasmas where magnetic inter-
actions occur, Ph= PV+ PJ but no strong, stabilizing B is
present �in contrast with tokamaks�, then turbulent electro-
magnetic �“e.m.”� fluctuations are likely to enhance energy
transport and flatten �T. Accordingly, Eq. �4.3� applies—to
the plasma bulk at least—provided that recombination and
ionization are negligible so that Eq. �2.4� holds; this is often
true as T	KeV. Ohm’s law of turbulent plasmas contains
many terms �51�, including the contribution�� of e.m. fluc-
tuations, where ��x� is some non-negative quantity �53�. If
we compute � with the simplifying approximation of unmag-
netized ions, then PV is the same as in fluids �51� ��=0 in
plasmas—see Sec. 58 of �52��. Then, the field B of the solu-
tion of the Euler-Lagrange equations of Eq. �4.3� solves also
�4� the Euler-Lagrange equations of Taylor’s principle �30�
of minimization of magnetic energy with the constraint of
fixed magnetic helicity �dxA ·B �B=�∧A ,A vector poten-
tial�
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� dx
B
2 = min. with fixed� dxA · B �8.3�

provided that Ha�Hacr, where Ha������−1/2Bd, , d,B and
Hacr are the Hartmann number, a typical linear size of the
system, a typical value for 
B
 and a threshold value, respec-
tively; if an electrical current I flows across a pure hydrogen
plasma then Hacr=4.4·103I�MA�1/2T�KeV�−1/2. In contrast, if
Ha�Hacr then spontaneous filamentation of the plasma cur-
rent occurs �54�. Independent computations confirm our con-
clusion qualitatively at least—see Sec. 3 and Fig. 3 of Ref.
�55�. Our discussion shows that Eq. �8.3� fails to describe
regions of plasma where �T�0—in agreement with experi-
ments �56�.

IX. APPLICATIONS OF EQ. (3.3)

We retrieve in Appendix C Rayleigh’s stability criterion in
thermoacoustics

� dx�Ph1p1� � �� − 1�−1�cs
2� da · �v1p1� �9.1�

for a mixture of perfect gases which are contained within
slowly moving boundaries and where PJ=0, PV=0, Ph de-
pends on short-range reactions and both heat conduction and
radiation are negligible—see, e.g., �34�, Eq. �1� of �35� and
Eq. �2� of �36�. Here cs is the speed of sound; � is the spe-
cific heat ratio �which we assume to be the same for all gases
of the mixture for simplicity�; �Ph1p1� and �v1p1� are the
correlation between perturbations of p and Ph and the corre-
lation between perturbations of v and p, respectively.

X. CONCLUSIONS

No universal criterion of stability for steady states of sys-
tems with dissipation exists but the second principle of ther-
modynamics �5�. When applied to a small mass element of a
mixture of different chemical species with the same tempera-
ture at local thermodynamic equilibrium �LTE�, the latter
principle leads to an often overlooked inequality, the so-
called general evolution criterion �GEC� �37,38�, which puts
a constraint on the time derivatives of thermodynamic quan-
tities like pressure, mass density etc. We assume that LTE
holds within an arbitrary small mass element followed along
its center-of-mass motion at all times, and that the system as
a whole evolves toward a final, steady, stable �“relaxed”�
state, where we maintain �as a working hypothesis� that the
word “steady” makes sense—possibly after time-averaging
on time scales� turbulent time scales. Since LTE holds ev-
erywhere at all times during relaxation, the relaxed state is
the final outcome of the GEC-constrained evolution of many
small mass elements.

Our aim is to gain information concerning the relaxed
state from GEC. We neglect both net mass sources, particle
diffusion, electric and magnetic polarization. We assume that
both conduction- and radiation-induced heat losses increase
with increasing temperature. We invoke also no Onsager
symmetry �in agreement with �41� and in contrast with �2��,
no detailed model of heat production and transport, no “ex-

tended thermodynamics” �14� and no “Maxent” method �17�.
Suitable integrations on the volume of the system of both
GEC and the balance of mass and energy of the small mass
element lead to constraints on the evolution of smooth per-
turbations which relax gently back to the relaxed state. These
constraints take the form of inequalities involving the time
derivatives of quantities like, e.g., the volume of the system
and the amount of entropy produced by heating processes.
Each inequality takes the simple form dA /dt�dB /dt
+dC /dt, where A, B, and C are volume integrals. Each in-
equality has its own triplet A ,B ,C. It forbids stability against
perturbations which leave both B and C unaffected, unless
the unperturbed state satisfies the variational principle A
=min. with the constraints of fixed B and C. The latter prin-
ciple is therefore a necessary condition for stability, which
turns out to be useful whenever relaxation satisfies B
=const. and C=const. In all the inequalities we have found,
C is either the volume of the system or its time derivative.
Correspondingly, we limit ourselves to perturbations which
conserve volume at all times, for simplicity, so that dC /dt
=0.

There is nothing special in our inequalities. More of them
are likely to be found, e.g., after relaxing one or more of our
assumptions. The only fundamental property we refer to is
LTE, as it allows us to derive GEC �or a possible generali-
zation of it� from the second principle. Straightforward in-
spection shows that our results lead—as particular cases—to
many criteria of stability for relaxed states in hydrodynam-
ics, plasma physics and thermoacoustics, which have been
often suggested in the literature without rigorous proof in
order to cope with experiments.

The criterion of stability to be adopted depends on the
particular problem. Not surprisingly, for isolated systems we
retrieve maximization of total entropy at thermodynamic
equilibrium. If the boundary conditions keep the relaxed
state far from thermodynamic equilibrium, the actual crite-
rion of stability depends on the detailed nature of the mo-
mentum balance of the small mass element, i.e., of the forces
acting on it �the �p-related force, the Lorenz force of elec-
tromagnetism and the forces which are gradients of poten-
tials�. Correspondingly, we deal with systems with various
heating mechanism—Ohmic heating, viscous heating, heat-
ing due to short-range reactions �which conserve the momen-
tum of the small mass element�—as well as with the no-
heating case.

Each criterion of stability takes the form of—or is a con-
sequence of—a variational principle: maximization or mini-
mization, depending on the problem. In agreement with �44�
and in contrast with �24�, we obtain that characterization of
systems far from equilibrium, e.g., by maximum entropy
production is not a general property but—just like minimum
entropy production—is reserved to special systems. We re-
trieve minimization of the amount of entropy produced per
unit time by all irreversible processes in no case, as we in-
voked no Onsager symmetry. In each case, however, a re-
laxed state solves the steady-state equations of motion �in
order to be a physically allowable steady state� and satisfies
the relevant stability condition �in order to be stable�. If the
latter reduces, e.g., to a constrained minimization, the former
adds new constraints �see e.g., �4��.
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A taxonomy of stability criteria is derived �see Table I�
which clarifies what is to be minimized, what is to be maxi-
mized and with which constraint for each problem. The list is
not—and is not meant to be—complete. In fact, we did not
investigate the consequences of possible simultaneous valid-
ity of more criteria for the same relaxed state, for simplicity.
To write down a complete list is a task, which overcomes the
limits of the present paper, and will be the matter of future
work.

Each column of Table I refers to a different criterion of
stability. Each criterion applies at least to the relaxed state of
the physical system quoted in the corresponding bibliogra-
phy and described in the corresponding column, where each
of the quantities on the left may either vanish �‘=0’� of differ
from zero �‘�0’�. Blank cells mean that the quantity on the
corresponding row has no effect on the validity of the crite-
rion.

�i� The first column refers to the benchmark case of ther-
modynamic equilibrium, where there is no heating and no
transport of heat and entropy.

�ii� The second column refers to a variational principle
utilized in the reconstruction of current density profiles in
tokamak plasmas at MHD equilibrium at JET �41�.

�iii� The third column refers to the maximization of the
entropy exchanged with the external world through convec-
tion per unit time. Rebhan �44� shows that this variational
principle is equivalent to one of the conservation equations

invoked in the description of strong shock waves.
�iv� The fourth column refers to the maximization of the

rate of entropy supplied to the surrounding environment
through conductive and/or radiative energy transport; it is
postulated by Ozawa and co-workers �21,22�–who generalize
Paltridge’s results �20�–in order to describe both the large-
scale structure of the general circulation of Earth’s atmo-
sphere and ocean and Bénard’s convection cells at Rayleigh
number Ra�onset threshold between parallel walls at differ-
ent temperatures. Experimenters in thermoacoustics observe
that the same variational principle rules the onset of oscilla-
tions in their experimental set-up �45�. Our proof of the
‘maximum’ principles of the third and the fourth column
invoked no Maxent method.

�v� The fifth column refers to the constrained minimiza-
tion of adverse temperature gradient with the constraint of
given heating power, a variational property which Chan-
drasekhar �26� shows to be enjoyed e.g., by Bénard convec-
tion cells at Ra	onset threshold between parallel walls at
different temperatures.

�vi� The sixth column refers to Kirchhoff’s minimization
�28� of Ohmic heating power—with the constraint of charge
conservation—for steady currents flowing across electrical
conductors with uniform resistivity and no turbulence. A par-
ticular case of this variational principle is Steenbeck’s varia-
tional principle �47� V=min. in a free-flowing, radiation-
cooled arc with voltage fall V. A weak, independently

TABLE I. Classification of some necessary criteria of stability against volume-preserving perturbations. From the text, we recall that A
is the vector potential, B is the magnetic field, cs is the sound speed, da is the surface vector element at the boundary, dx is the volume
element, E is the total energy, j is the electric current density, Ph is the heating power density, q is the heat flux due to conduction and
radiation, S is the total entropy, s is the entropy per unit mass, T is the temperature, Um is the mean macroscopic velocity in sheared flow
between parallel plates, v is the velocity, � is the specific heat ratio, � is the dynamical viscosity, �� is the electrical resistivity, k= ��
−1�−1�cs

2, � is a non-negative quantity proportional to the turbulent correction to Ohm’s law in MHD turbulence �53�, � is the kinematic
viscosity, � is the mass density, and W is the energy released per particle by short-range �chemical, nuclear� reactions. For the generic
quantity a�x�, ��a��, and a1 are its spatial average and its perturbation with respect to the relaxed state, respectively. For non-negative a,
��a���0 if and only a=0 everywhere: thus, ������=0 implies no Joule heating anywhere, �����=0 implies no viscous heating anywhere, and
�����=0 implies no turbulent e.m. fluctuations anywhere.

Thermod.
eq.

S=max.
E=fixed

Ref. �41�
�dxPh /T

=min.
�dxPh

=fixed

Ref. �44�
�da ·�sv
=max.

Refs.
�45,20,22�
�da ·q /T

=max.

Ref. �26�
��
�T
��
=min.
�dxPh

=fixed

Refs.
�28,29�

�dx
j
2��

=min.
� · j=0

Ref. �42�
��ik� 
�vi /�xk
2

=max.
� ·v=0

Um=fixed

Ref. �27�
�dx
�∧v
2�

=min.
� ·v=0

Ref. �30�b

�dx
B
2
=min.

�dxA ·B
=fixed

Refs.
�35,36�c

�dx�Ph1p1�
�

k�da�v1p1�

�dxT−1Ph =0 �0 =0a =0 �0 �0 �0 �0 �0

�da ·�sv =0 �0 =0 =0 =0 =0

�dxq ·��T−1� =0 =0a �0 =0

��
�T
�� =0 �0 �0d =0 �0e =0 =0

������ �0 �0 =0 =0 �0 =0

����� =0 =0 �0 �0 �0 =0

����� =0 =0 =0 =0 �0 =0

W =0 =0 =0 =0 =0 =0 �0

aIn strong shocks, volume integrals vanish as the volume shrinks to zero for large Mach numbers.
bFor a turbulent plasma with current I and Hartmann number Ha�Hacr; spontaneous filamentation occurs �54� if Ha�Hacr.; Hacr

=4.4·103I�MA�1/2T�KeV�−1/2 in pure hydrogen.
cMixture of perfect gases with the same �.
dBoundaries at different temperatures.
eBoundaries at the same T.
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confirmed �48� dependence of V on T follows from Steen-
beck’s discussion.

�vii� The seventh column refers to Malkus’ maximization
of total rate of viscous dissipation per unit mass—with the
constraint of fixed mean macroscopic velocity—in the turbu-
lent sheared flow between parallel walls at the same tempera-
ture of incompressible, viscous fluids which are subject to
the �p force.

�viii� The eighth column refers to Helmholz-Korteweg’s
�27� minimization of viscous power for incompressible, vis-
cous fluids which are subject to the �p force and �possibly�
to gradients of constant potentials, with v=0 everywhere at
the boundary and uniform T across the fluid. This result is in
contrast with the maximization prescribed by the Maxent
approach �17�.

�ix� The ninth column refers to Taylor’s minimization of
magnetic energy with the constraint of fixed magnetic helic-
ity �30� in turbulent, relaxed, T�KeV plasmas where fluc-
tuations are not stabilized by external magnetic fields and
fluctuation-enhanced transport flattens �T, provided that
the Hartmann number�a threshold value Hacr. For pure
hydrogen plasmas where a current I flows, Hacr
=4.4·103I�MA�1/2T�KeV�−1/2. Below this threshold, sponta-
neous filamentation occurs �54�. These results agree with in-
dependent calculations �55�.

�x� The 10th column refers to the version of Rayleigh’s
criterion �34� which is discussed in �35� �36� for thermoa-
coustic oscillations in a mixture of perfect gases where heat-
ing is due to short-range �chemical, nuclear� reactions; if we
replace the sign � with � we obtain a sufficient condition
for instability.

We have shown that LTE �and its consequence, the gen-
eral evolution criterion� is the common basis of many differ-
ent criteria for stability for dissipative fluids and plasmas.
Further extension of the method outlined here to other prob-
lems is conceivable, and will be the matter of future work.
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APPENDIX A

1. Proof of Eq. (1.5)

Here we rewrite the proof of �37� and of Appendix of
�38�, for the sake of completeness. We write �−1=�zczvz, h
�u+ p�−1=�zczhz, s=�zczsz, g�h−Ts=�zcz�

�
z. The fol-

lowing identities hold:

hz = ��
z + Tsz; �A.1�

��h/�p�T,N = �−1 − T���−1/�T�p,N; �A.2�

��h/�T�p,N = ��u/�T��,N − T���−1/�T�2
p,N���−1/�p�−1

T,N;

�A.3�

Equation �1.1� leads to Gibbs-Duhem relationship �zczd��
z

=�−1dp−sdT, which in turn leads to two relationships

sz = − ����
z/�T�p,N; �A.4�

vz = ����
z/�p�T,N; �A.5�

Finally, we choose p, T and the cj‘s as independent variables,
invoke da= �da /dt�dt, and write

d��u�/dt = − �dp/dt� + d��h�/dt; �A.6�

dh/dt = ��h/�p�T,N�dp/dt� + ��h/�T�p,N�dT/dt� + � jhj�dcj/dt�;
�A.7�

d�−1/dt = ���−1/�p�T,N�dp/dt� + ���−1/�T�p,N�dT/dt�

+ � jv j�dcj/dt�; �A.8�

d���
kT

−1�/dt = T−1����
k/�p�T,N�dp/dt�

+ �����
kT

−1�/�T�p,N�dT/dt�

+ T−1� j����
k/�cj�p,T�dcj/dt�; �A.9�

Equations �A.1�–�A.9� lead to

�dT−1/dt��d��u�/dt� − ��k�d���
kT

−1�/dt��dck/dt�

+ �T−1�dp/dt��d�−1/dt� − �dT−1/dt�h�d�/dt�

= − �T−2��u/�T��,N�dT/dt�2

+ �T−1���−1/�p�−1
T,N����−1/�T�p,N�dT/dt�

+ ���−1/�p�T,N�dp/dt��2 − �k� j����
k/�cj�p,T�dck/dt�

	�dcj/dt� . �A.10�

Inequalities �1.2�–�1.4� and �A.10� lead to Eq. �1.5�.

APPENDIX B

1. Proof of Eqs. (3.1)–(3.3) and (6.1)

First, some intermediate steps. We invoke the identity

d��
�

dxa�/dt = �
�

dx��a/�t + � · �au�� , �B.1�

�see Sec. II 4.116 of �57�� which holds for a domain � with
moving boundary, where a point on the boundary moves lo-
cally at speed u. If � is the region of space occupied by our
system, then u=v on its boundary, and we skip the subscript
‘�’ for simplicity. Equations �2.1� and �B.1� give

d��
�

dxa�/dt = �
�

dx��d��−1a��/dt + � · �a�u − v�� .

�B.2�

If � is the region of space occupied by our system, then u
=v on its boundary, and Eq. �B.2� reduces to

d�� dxa�/dt =� dx�d��−1a�/dt . �B.3�

In turn, Eq. �B.3� leads to
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d2�� dx�a�/dt2 =� dx�d2a/dt2. �B.4�

We limit ourselves to smooth perturbations, i.e., we neglect
terms�gradients of time derivatives and da /dt has the same
sign everywhere. Then, we may safely assume that a func-
tion g�x , t� of x and t, which is either the product of da /dt
and a positive definite quantity or the product of two time
derivatives �say da /dt and da� /dt� has the same sign of ��g��
everywhere in �. For such g�x , t� relationship �2.5� leads to

aE� dxg�x,t� �� dxa�x,t�g�x,t� � ae� dxg�x,t� .

�B.5�

Here aE�−ae; ae=Amax if ��g���0 and ae=Amin if
��g���0. In fact, if ��g���0 then g�x , t��0
and �dxa�x , t�g�x , t�� 
�dxa�x , t�g�x , t�
��dx
a�x , t�g�x , t�

=�dx
a�x , t�
g�x , t��AM�t��dxg�x , t��Amax�dxg�x , t�. An-
alogous arguments hold for ��g���0 and for the inequality
concerning aE.

Now, the proof of Eqs. �3.3� and �3.1� begins. Relation-
ships �1.5�, �2.3�, and �2.4� give

�d��−1PT−1�/dt � T−1�d��−1P�/dt + �−1T−1�dp/dt��d�/dt� .

�B.6�

We define ���1 /T��1+ �Pho / Ph�d�ln T−1� /d�ln Ph��, �
� Ph�T−1−��−T−1dp /dt, c1��e, c2��e, c4�T−1

e, and c3
� pec4. Relationships �B.3�, �B.5�, and �B.6� give

d�� dxT−1P�/dt � c4� dx��d��−1P�/dt

+ �−1�dp/dt��d�/dt�� . �B.7�

Relationships �2.3�, �B.4�, �B.5�, and �B.7� lead to

d�� dxP/T�/dt � c4� dx�pd2��−1�/dt2 + c4d2E/dt2

� c3� dx�d2��−1�/dt2 + c4d2E/dt2

= c3d2V/dt2 + c4d2E/dt2. �B.8�

Relationships �2.4�, �B.3�, and �B.4� lead to

d�� dxP/T�/dt = d2S/dt2. �B.9�

Relationships �B.8� and �B.9� lead to Eq. �3.3�.
Relationships �2.1�, �2.2�, and �B.6�, Ph= Ph0+ Ph1, and

P0=0 lead to

0 � Pd�T−1�/dt − �−1T−1�dp/dt��d�/dt�

= �Ph − � · q�1d�T−1�/dt − �−1T−1�dp/dt��d�/dt�

= �d��−1PhT−1�/dt − ��� · v� − �� · q�1d�T−1�/dt

− ��d��−1Ph�/dt . �B.10�

After volume integration of both sides of Eq. �B.10�, rela-
tionships �2.1�, �2.6�, �B.3�, and �B.5� lead to Eq. �3.1�.

Let us proof Eq. �3.2�. Relationships �2.2�, �2.4�, and
�B.2� give the total time derivative of S����dx�s in a ge-
neric region �

dS�/dt = �
�

dx�T−1Ph + q · �T−1 + � · ��s�u − v� − T−1q�� .

�B.11�

We apply Eq. �B.11� to two regions: our system �with u=v
on its boundary�, and a region � with fixed boundary �u
=0� where Ph=0 and �T=0. Here and in the following, � is
just a dummy region, which is useful for explicit discussion
of the role of boundary; � will disappear in the final result.
Accordingly, Eq. �B.11� gives

dS/dt =� dx�T−1Ph + q · �T−1 − � · �T−1q�� , �B.12�

dS�/dt = − �
�

dx� · ��sv + T−1q� . �B.13�

During the relaxation process, we assume that our system
and � interact with each other only, and across a common
contact surface. �As a thought-experiment, think, e.g., of a
small perturbation of a droplet of lukewarm coffee which is
in contact with a cup �, with negligible coffee evaporation
during relaxation of the perturbation�. Since � is a dummy
region, this assumption implies no loss of generality. Accord-
ingly, da+da�=0 along the common contact surface, where
da and da� are the surface elements of the boundaries of our
system and �, respectively. Gauss’ theorem and Eq. �B.13�
lead to

dS�/dt = − �
�

dx� · ��sv + T−1q� = − �
�

da� · ��sv + T−1q�

=� da · ��sv + T−1q� =� dx� · ��sv + T−1q� .

�B.14�

Term-by-term sum of Eqs. �B.12� and �B.14� gives the total
time derivative of the total entropy Stotal�S+S�

dStotal/dt =� dx�T−1Ph − T−1�� · q� + � · ��sv + T−1q�� .

�B.15�

As anticipated, � has disappeared on the RHS of Eq. �B.15�.
Let us take the total time derivative of both sides of Eq.
�B.15��

d2Stotal/dt2 = d�� dxT−1Ph�/dt

+ d�� dx�� · ��sv� + q · ��T−1���/dt .

�B.16�

Relationships �3.1� and �B.16� give
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d2Stotal/dt2 � c1dV/dt + c2d�� dxPh�/dt

+ d�� dx�� · ��sv� + q · ��T−1���/dt .

�B.17�

We neglect the LHS of Eq. �B.17� in comparison with the
RHS as our perturbation relaxes gently back to the unper-
turbed state; Eq. �3.2� follows.

Finally, �B.1� and �B.12� give Eq. �6.1� in steady state
�� /�t=0�.

APPENDIX C

1. Proof of Eq. (9.1)

The arguments of Sec. 4 and Eq. �B.8� show that pertur-
bations which conserve E and V make the system to relax to
states which minimize �dxP /T. Then, in a neighborhood of a
relaxed state we may write

0 � �� dxT−1P�
1
. �C.1�

We invoke both u=v on the boundary and the smallness of
a1	da= �da /dt�dt. Together with Eqs. �2.3� and �B.1�, time-
averaging of both sides of Eq. �C.1� gives

0 � ��� dxT−1P�
1
� = �dtd�� dxT−1P�/dt�

= ��� dxdt � �T−1P��/�t� + �� dx� · �T−1Pv�dt�
= ��� dxdt � �T−1P��/�t� + �� da · T−1Pvdt�
= ��� dxdt � �T−1P��/�t� + �� da · vT−1��du + pd�−1�� .

�C.2�

If the time scale of the boundary motion is � the time scale
of perturbations, then ���dxa��	�dx�a� and ��da ·va�
	�da · �va�. Since we are dealing with perturbations near
a minimum, we are interested in second-order quantities
only. We neglect long-range correlations between P and T
�this choice will be justified below� and write
�dx�dt� �T−1P� /�t�=�dx��T−1�1P1�. Thus, Eq. �C.2� gives

−� dx��T−1�1P1� �� da · �v1�T−1�u1 + T−1�p��−1�1�� .

�C.3�

In order to select the perturbation of interest, we take advan-
tage of the smallness of P1. According to P0=0 and to Eq.
�2.4� P1	0 is satisfied whenever ds	0. Since the perturba-
tion is almost adiabatic and we are dealing with a mixture of
perfect gases, we make a small error if we assume that rela-
tionships p=d1�T, p=d2��, �u= �1+��p / ��−1� hold—
approximately at least—during the relaxation; here d1, d2, �,
and � are constant quantities, � plays the role of a constant
specific heat ratio and the quantity ��1 expresses the devia-
tion from the adiabatic behavior �to the author’s knowledge,
the impact of this deviation on the evolution of our soundlike
perturbation has been stressed for the first time in �34��. It
follows that �T−1�1=−Gp1 and T−1�u1+T−1�p��−1�1=Fp1,
where G�d1d2

−1/��1−1 /��p0
−2+1/�, F��G��−1�−1p0.

Both—G and F are upper bounded in a neighborhood of a
stable state. It follows from Eq. �B.5� �with a=F and a=G�
that

GE� dx�P1p1� � −� dx��T−1�1P1� , �C.4�

� da · �v1�T−1�u1 + T−1�p��−1�1�� � Fe� da · �v1p1� ,

�C.5�

where we invoked a1	da= �da /dt�dt, ���dxa��	�dx�a�,
��da ·va�	�da · �va�, and Eq. �B.5� with g
= �dP /dt��dp /dt� and g= �d�v ·da� /dt��dp /dt� in Eqs. �C.4�
and �C.5�, respectively. If � ·q is negligible, then Eqs. �2.2�
and �C.3�–�C.5� lead to the following necessary condition for
stability:

� dx�Ph1p1� � k� da · �v1p1� , �C.6�

where k�Fe /GE. Since Ph depends on short-range reactions
and � ·q=0 implies P= Ph in Eq. �2.2�, long-range correla-
tions between P and T are indeed negligible. Physically,
compression induces heating, hence G�0 everywhere, and
GE�0. We can always take Fe�0; then k�0. If the signs =
and � replace the sign � in Eq. �9.1�, marginal stability and
a sufficient condition for instability follow. Marginal stability
corresponds to a balance between the power supplied by
short-range reactions to the fluid and the power lost through
convection across the boundary. Then �35� k= ��−1�−1�cs

2,
and Eq. �C.6� reduces to Eq. �9.1�.

�1� L. D. Landau and E. Lifshitz, Fluid Mechanics �Pergamon,
Oxford, 1960�.

�2� S. R. DeGroot and P. Mazur, Non-Equilibrium Thermodynam-
ics �North Holland, Amsterdam, 1962�.

�3� I. Prigogine and G. Nicolis, in Non-Equilibrium Systems

�Wiley Sons, New York, 1977�.
�4� A. Di Vita, Eur. Phys. J. D 54, 451 �2009�.
�5� M. Brusati and A. Di Vita, J. Plasma Phys. 50, 201 �1993�.
�6� F. Pegoraro, Fusion Technol.. 26, 1243 �1994�.
�7� I. Gyarmati, Non-equilibrium Thermodynamics �Springer, Ber-

A. DI VITA PHYSICAL REVIEW E 81, 041137 �2010�

041137-12

http://dx.doi.org/10.1140/epjd/e2009-00092-x
http://dx.doi.org/10.1017/S0022377800027021


lin, 1970�.
�8� L. M. Martyushev and V. D. Seleznev, Phys. Rep. 426, 1

�2006�.
�9� M. Ichiyanagi, Phys. Rep. 24, 125 �1994�.

�10� P. Zupanovic, D. Juretic, and S. Botric, Fiz. A 14, 89 �2005�.
�11� D. Juretic and P. Zupanovic, Comput. Biol. Chem. 27, 541

�2003�.
�12� R. Balescu, Trans. Fusion Technol. 25, 105 �1994�.
�13� S. Sieniutycz and S. R. Berry, Phys. Rev. A 46, 6359 �1992�.
�14� D. Jou, J. Casas-Vàzquez, and G. Lebon, Rep. Prog. Phys. 51,

1105 �1988�.
�15� E. T. Jaynes, Phys. Rev. 106, 620 �1957�.
�16� E. T. Jaynes, Phys. Rev. 108, 171 �1957�.
�17� R. Dewar, J. Phys. A 36, 631 �2003�.
�18� R. D. Dewar, J. Phys. A 38, L371 �2005�.
�19� R. K. Niven, Phys. Rev. E 80, 021113 �2009�.
�20� G. W. Paltridge, Nature �London� 279, 630 �1979�.
�21� H. Ozawa, S. Shimokawa, and H. Sakuma, Phys. Rev. E 64,

026303 �2001�.
�22� H. Ozawa, A. Ohmura, R. D. Lorenz, and T. Pujol, Rev. Geo-

phys. 41, 1018 �2003�.
�23� G. Grinstein and R. Linsker, J. Phys. A: Math. Theor. 40, 9717

�2007�.
�24� Y. Sawada, Prog. Theor. Phys. 66, 68 �1981�.
�25� H. Ziegler, ZAMP 34, 832 �1983�.
�26� S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability

�Oxford University Press, New York, 1961�.
�27� H. Lamb, Hydrodynamics �Cambridge University Press, Cam-

bridge, England, 1906�.
�28� E. T. Jaynes, Annu. Rev. Phys. Chem. 31, 579 �1980�.
�29� F. Herrmann, Eur. J. Phys. 7, 130 �1986�.
�30� J. B. Taylor, Phys. Rev. Lett. 33, 1139 �1974�.
�31� H. A. B. Bodin and A. A. Newton, Nucl. Fusion 20, 1255

�1980�.
�32� B. C. Low, Phys. Plasmas 1, 1684 �1994�.
�33� A. Koenigl and A. R. Choudhuri, Astrophys. J. 289, 173

�1985�.
�34� W. Rayleigh, Nature �London� 18, 319 �1878�.
�35� A. Dowling, Modeling and Control of Combustion Oscillation,

Proceedings of the GT2005, ASME TurboExpo, Reno-Tahoe,
USA, 6–9 June, 2005 �ASME, New York, 2005�.

�36� W. Polifke, Combustion Instabilities, Advances In Acoustics
And Applications, Van Karman Institute Lecture Series �VKI,
Brussels, 2004�.

�37� P. Glansdorff and I. Prigogine, Physica 30, 351 �1964�.
�38� A. Di Vita, Proc. R. Soc. London, Ser. A 458, 21 �2002�.
�39� I. Prigogine and R. Defay, Chemical Thermodynamics

�Longmans-Green, London, 1954�.
�40� J. A. Shercliff, A Textbook of Magnetohydrodynamics �Perga-

mon, New York, 1965�.
�41� A. Di Vita and M. Brusati, Plasma Phys. Controlled Fusion

37, 1075 �1995�.
�42� W. V. R. Malkus, J. Fluid Mech. 1, 521 �1956�.
�43� I. V. Elsgolts Differential Equations and Variational Calculus

�Mir, Paris, 1981�.
�44� E. Rebhan, Phys. Rev. A 42, 781 �1990�.
�45� T. Biwa, Y. Ueda, T. Yazaki, and U. Mizutani, EPL 60, 363

�2002�.
�46� L. D. Landau and E. Lifshitz, Electrodynamics of Continuous

Media �Pergamon, 1960�.
�47� M. Steenbeck, Wissenschaftlichen Veroeffentlichungen aus

den Siemens Werke 1, 59 �1940� �in German�.
�48� S. L. Frost et al. Proc. IEEE 59, 474 �1971�.
�49� M. Marani and J. R. Bhanavar, J. Phys. A 31, L337 �1998�.
�50� E. Rebhan, Phys. Rev. A 32, 581 �1985�.
�51� S. I. Braginskij, in Transport Processes in a Plasma, Reviews

Plasma Physics, edited by M. A. Leontovich �Consultants Bu-
reau, New York, 1965�. Vol. 1, p. 205.

�52� L. D. Landau and E. Lifshitz, Kinetic Physics �Pergamon, New
York, 1960�.

�53� A. H. Boozer, J. Plasma Phys. 35, 133 �1986�.
�54� A. Di Vita, Eur. Phys. J. D 56, 205 �2010�.
�55� D. F. Escande, S. Cappello, F. D’Angelo, C. Marchetto, P.

Paccagnella, and D. Benisti, The Reversed Field Pinch as a
Magnetically Quiet and Non Chaotic Configuration, Proceed-
ings of the XVIII IAEA Fus. En. Conference, Sorrento Italy
4–10 Oct. 2000 �unpublished�.

�56� V. Antoni, P. Martin, and S. Ortolani, Nucl. Fusion 29, 1759
�1989�.

�57� V. I. Smirnov A Course in Higher Mathematics �Mir, Paris,
1977�.

�58� H.-J. Woo, Phys. Rev. E 66, 066104 �2002�.

MAXIMUM OR MINIMUM ENTROPY PRODUCTION? HOW TO … PHYSICAL REVIEW E 81, 041137 �2010�

041137-13

http://dx.doi.org/10.1016/j.physrep.2005.12.001
http://dx.doi.org/10.1016/j.physrep.2005.12.001
http://dx.doi.org/10.1016/0370-1573(94)90052-3
http://dx.doi.org/10.1016/j.compbiolchem.2003.09.001
http://dx.doi.org/10.1016/j.compbiolchem.2003.09.001
http://dx.doi.org/10.1103/PhysRevA.46.6359
http://dx.doi.org/10.1088/0034-4885/51/8/002
http://dx.doi.org/10.1088/0034-4885/51/8/002
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/PhysRev.108.171
http://dx.doi.org/10.1088/0305-4470/36/3/303
http://dx.doi.org/10.1088/0305-4470/38/21/L01
http://dx.doi.org/10.1103/PhysRevE.80.021113
http://dx.doi.org/10.1038/279630a0
http://dx.doi.org/10.1103/PhysRevE.64.026303
http://dx.doi.org/10.1103/PhysRevE.64.026303
http://dx.doi.org/10.1029/2002RG000113
http://dx.doi.org/10.1029/2002RG000113
http://dx.doi.org/10.1088/1751-8113/40/31/N01
http://dx.doi.org/10.1088/1751-8113/40/31/N01
http://dx.doi.org/10.1143/PTP.66.68
http://dx.doi.org/10.1007/BF00949059
http://dx.doi.org/10.1146/annurev.pc.31.100180.003051
http://dx.doi.org/10.1088/0143-0807/7/2/010
http://dx.doi.org/10.1103/PhysRevLett.33.1139
http://dx.doi.org/10.1063/1.870671
http://dx.doi.org/10.1086/162876
http://dx.doi.org/10.1086/162876
http://dx.doi.org/10.1038/018319a0
http://dx.doi.org/10.1016/0031-8914(64)90009-6
http://dx.doi.org/10.1098/rspa.2001.0860
http://dx.doi.org/10.1088/0741-3335/37/10/002
http://dx.doi.org/10.1088/0741-3335/37/10/002
http://dx.doi.org/10.1017/S0022112056000342
http://dx.doi.org/10.1103/PhysRevA.42.781
http://dx.doi.org/10.1209/epl/i2002-00273-1
http://dx.doi.org/10.1209/epl/i2002-00273-1
http://dx.doi.org/10.1109/PROC.1971.8206
http://dx.doi.org/10.1088/0305-4470/31/18/002
http://dx.doi.org/10.1103/PhysRevA.32.581
http://dx.doi.org/10.1017/S0022377800011181
http://dx.doi.org/10.1140/epjd/e2009-00294-2
http://dx.doi.org/10.1103/PhysRevE.66.066104

